Motion Control Strategies for a Repetitive Leaping Robotic Dolphin

IEEE-ASME Transactions on Mechatronics(2019)

引用 34|浏览10
暂无评分
摘要
It is challenging to emulate high-speed and short-duration surface piercing motions for a self-propelled robotic dolphin when it attempts to perform leaps in the context of bioinspired robotics. This paper presents motion control strategies for a repetitive leaping robotic dolphin serving as a platform for implementation and evaluation of modeling and control methods. First, an integrative model that takes account of both kinematics and dynamics is established to explore the possibility of leaping with an untethered swimming robot. Then, a novel high-speed swimming control strategy is then put forward based on the angle of attack theory, followed by the proposal of orientation control strategy. Finally, leaping tests on the actual robot verify the effectiveness of the conducted leaping analysis along with the proposed control strategies. Remarkably, the robot was able to conduct three continuous leaps back-to-back for the first time in a confined swimming pool. Results from this study also have implications for bioinspired design, where high speeds and maneuverability are required.
更多
查看译文
关键词
Dolphins,Sports,Propulsion,Motion control,Aquatic robots
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要