Impact of initial protein stability on local fitness landscapes

bioRxiv(2019)

引用 1|浏览6
暂无评分
摘要
It is incompletely understood how biophysical properties like protein stability impact molecular evolution and epistasis. Epistasis is defined as specific when a mutation exclusively influences the phenotypic effect of another mutation, often at physically interacting residues. By contrast, nonspecific epistasis results when a mutation is influenced by a large number of non-local mutations. As most mutations are pleiotropic, basal protein stability is thought to determine activity-enhancing mutational tolerance, which implies that nonspecific epistasis is dominant. However, evidence exists for both specific and nonspecific epistasis as the prevalent factor, with limited comprehensive datasets to validate either claim. Here we use deep mutational scanning to probe how initial enzyme stability impacts local fitness landscapes. We computationally designed two different variants of the amidase AmiE in which catalytic efficiencies are statistically indistinguishable but the enzyme variants have lower probabilities of folding in vivo. Local fitness landscapes show only slight alterations among variants, with essentially the same global distribution of fitness effects. However, specific epistasis was predominant for the subset of mutations exhibiting positive sign epistasis. These mutations mapped to spatially distinct locations on AmiE near the initial mutation or proximal to the active site. Most intriguingly, the majority of specific epistatic mutations were codon-dependent, with different synonymous codons resulting in fitness sign reversals. Together, these results offer a nuanced view of how protein stability impacts local fitness landscapes, and suggest that transcriptional-translational effects are an equally important determinant as thermodynamic stability in determining evolutionary outcomes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要