Influence of green tea constituents on cultured porcine luteinized granulosa cell functions

JOURNAL OF ANIMAL AND FEED SCIENCES(2019)

引用 1|浏览11
暂无评分
摘要
The aim of the study was to examine the action of green tea polyphenols (GTPP) and their main constituent, epigallocatechin-3-gallate (EGCG), on porcine ovarian granulosa cells. For this purpose, the effect of GTPP and EGCG on cultured porcine ovarian granulosa cell functions, including proliferation, apoptosis, steroidogenesis and response to insulin-like growth factor I (IGF-I) was examined. Proliferation (the accumulation of proliferating cell nuclear antigen (PCNA) and cyclin B1), apoptosis (the accumulation of bax and caspase 3) and the release of steroid hormones (progesterone and testosterone) were evaluated by using immunocytochemistry and enzyme immunoassay. The addition of both GTPP and EGCG reduced the percentage of both PCNA- and cyclin B1-positive cells, increased the proportion of cells containing bax and caspase 3 and stimulated progesterone release. GTPP had a biphasic effect on testosterone output - stimulating at dose 1 mu g/ml and inhibiting at doses 10 and 100 mu g/ml, whilst EGCG did not affect testosterone secretion. IGF-I, when administered alone, promoted % of cells containing PCNA, suppressed bax accumulation, and stimulated progesterone release (only at dose 100 ng/ml). Testosterone release increased after the addition of IGF-I at 1 mu g/ml, but decreased after IGF-I addition at 10 or 100 ng/ml. Both GTPP and EGCG suppressed or even reversed the effects of IGF-I on percentage of PCNA-positive cells, bax, testosterone output, and promoted IGF-I action on progesterone release. These observations suggested the inhibitory actions of green tea constituents on porcine ovarian granulosa cell functions were mediated through various regulatory mechanisms: suppression of the ovarian cell cycle in the S and G2 phases; promotion of cytoplasmic apoptosis; alteration of steroid hormone release; and, predominantly, prevention of the action of the hormonal stimulator I GF-I on ovarian cells. It can be also suggested that the major GTPP effects may result from the presence of EGCG.
更多
查看译文
关键词
polyphenols,epigallocatechin-3-gallate,proliferation,apoptosis,progesterone,testosterone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要