The C. elegans SET-2 histone methyltransferase maintains germline fate by preventing progressive transcriptomic deregulation across generations

bioRxiv(2019)

引用 1|浏览30
暂无评分
摘要
Chromatin factors contribute to germline maintenance by preserving a germline-appropriate transcriptional program. In the absence of the conserved histone H3 Lys4 (H3K4) methyltransferase SET-2, C. elegans germ cells progressively lose their identity over generations, leading to sterility. How this transgenerational loss of fertility results from the absence of SET-2 is unknown. Here we performed expression profiling across generations on germlines from mutant animals lacking SET-2 activity. We found that gene deregulation occurred in 2 steps: a priming step in early generations progressing to loss of fertility in later generations. By performing Within-Class Analysis (WCA), a derivative of Principal Component Analysis, we identified transcriptional signatures associated with SET-2 inactivation, both at the priming step and later on during loss of fertility. Further analysis showed that repression of germline genes, derepression of somatic programs, and X-chromosome desilencing through interference with PRC2-dependent repression, are priming events driving loss of germline identity in the absence of SET-2. Decreasing expression of identified priming genes, including the C/EBP homologue cebp-1 and TGF-β pathway components, was sufficient to delay the onset of sterility, suggesting that they individually contribute to the loss of germ cell fate. Altogether, our findings illustrate how the loss of a chromatin regulator at one generation can progressively deregulate multiple transcriptional and signaling programs, ultimately leading to loss of appropriate cell fate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要