Application of a Fluid–Structure Interaction Model for Analysis of the Thermodynamic Process and Performance of Boil-Off Gas Compressors

ENTROPY(2019)

引用 1|浏览5
暂无评分
摘要
Boil-off gas (BOG) compressors are among the most critical devices in transportation and receiving systems for liquid natural gas (LNG) because they are used to pump out excess BOG from LNG storage tanks to ensure safety. Because of the ultralow suction temperature, the influence of heat transfer between the cold gas and the compressor parts on the in-cylinder thermodynamic process cannot be ignored. This paper reports the effects of suction temperature on the thermodynamic process and performance of a BOG compressor with consideration of gas pulsation. A computational fluid dynamics (CFD) model with dynamic and sliding meshes was established, in which user-defined functions (UDFs) were used to calculate the real-time valve lift to realize coupling between the thermodynamic process and the gas pulsation, and a performance test rig was constructed to verify the proposed numerical model. The simulated results agreed well with the experimental ones. The results show that as the suction temperature decreased from 30 degrees C to -150 degrees C, the first-stage volumetric efficiency decreased to 0.69, and the preheating increased to 45.8 degrees C. These results should provide academic guidance and an experimental basis for the design and optimization of BOG compressors.
更多
查看译文
关键词
BOG compressor,CFD,UDFs,gas pulsation,suction temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要