Structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma

bioRxiv(2019)

引用 0|浏览23
暂无评分
摘要
Neuroblastoma, like many childhood cancers, exhibits a relative paucity of somatic single nucleotide variants (SNVs). Here, we assess the contribution of structural variation (SV) in neuroblastoma using a combination of whole genome sequencing (WGS; n=135) and single nucleotide polymorphism (SNP) genotyping (n=914) of matched tumor-normal pairs. Our study design provided means for orthogonal validation of SVs as well as validation across genomic platforms. SV frequency, type, and localization varied significantly among high-risk tumors, with MYCN non-amplified tumors harboring an increased SV burden overall (P=1.12x10-5). Genes disrupted by SV breakpoints were enriched in neuronal lineages and autism spectrum disorder. The postsynaptic adapter protein-coding gene SHANK2, located on chromosome 11q13, was disrupted by SVs in 14% and 10% of MYCN non-amplified high-risk tumors based on WGS and SNP array cohorts, respectively. Forced expression of SHANK2 in neuroblastoma cell models resulted in significant growth inhibition (P=2.62x10-2 to 3.4x10-5) and accelerated neuronal differentiation following treatment with all-trans retinoic acid (P=3.08x10-13 to 2.38x10-30). These data further define the complex landscape of structural variation in neuroblastoma and suggest that events leading to deregulation of neurodevelopmental processes, such as inactivation of SHANK2, are key mediators of tumorigenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要