Role of Electric Field and Surface Protonics on Low-Temperature Catalytic Dry Reforming of Methane

ACS Sustainable Chemistry & Engineering(2019)

引用 30|浏览3
暂无评分
摘要
The role of the electric field and surface protonics on low temperature catalytic dry reforming of methane was investigated over 1 wt %Ni/10 mol %La-ZrO2 catalyst, which shows very high catalytic activity even at temperatures as low as 473 K. We investigated kinetic analyses using isotope and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and kinetic analyses revealed synergetic effects between the catalytic reaction and the electric field with less than one-fifth the apparent activation energy at low reaction temperatures. Results of kinetic investigations using isotopes such as CD4 and 18O2, in situ DRIFTS in the electric field, and density functional theory calculation indicate that methane dry reforming proceeds well by virtue of surface protonics. CH4 and CO2 were activated by proton collision at the Ni–La-ZrO2 interface based on the “inverse” kinetic isotope effect.
更多
查看译文
关键词
Carbon dioxide utilization,Dry reforming of methane,Ni catalyst,Surface protonics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要