A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium

PLOS GENETICS(2019)

引用 7|浏览3
暂无评分
摘要
Telomerase, particularly its main subunit, the reverse transcriptase, TERT, prevents DNA erosion during eukaryotic chromosomal replication, but also has poorly understood non-canonical functions. Here, in the model social amoeba Dictyostelium discoideum, we show that the protein encoded by tert has telomerase-like motifs, and regulates, non-canonically, important developmental processes. Expression levels of wild-type (WT) tert were biphasic, peaking at 8 and 12 h post-starvation, aligning with developmental events, such as the initiation of streaming (similar to 7 h) and mound formation (similar to 10 h). In tert KO mutants, however, aggregation was delayed until 16 h. Large, irregular streams formed, then broke up, forming small mounds. The mound-size defect was not induced when a KO mutant of countin (a master size-regulating gene) was treated with TERT inhibitors, but anti-countin antibodies did rescue size in the tert KO. Although, conditioned medium (CM) from countin mutants failed to rescue size in the tert KO, tert KO CM rescued the countin KO phenotype. These and additional observations indicate that TERT acts upstream of smlA/countin: (i) the observed expression levels of smlA and countin, being respectively lower and higher (than WT) in the tert KO; (ii) the levels of known size-regulation intermediates, glucose (low) and adenosine (high), in the tert mutant, and the size defect's rescue by supplemented glucose or the adenosine-antagonist, caffeine; (iii) the induction of the size defect in the WT by tert KO CM and TERT inhibitors. The tert KO's other defects (delayed aggregation, irregular streaming) were associated with changes to cAMP-regulated processes (e.g. chemotaxis, cAMP pulsing) and their regulatory factors (e.g. cAMP; acaA, carA expression). Overexpression of WT tert in the tert KO rescued these defects (and size), and restored a single cAMP signaling centre. Our results indicate that TERT acts in novel, non-canonical and upstream ways, regulating key developmental events in Dictyostelium. Author summary When cells divide, their chromosomes are prone to shrinkage. This risk is reduced by an enzyme that repairs protective caps on each chromosome after cell division. This enzyme, telomerase, also has several other important but unrelated roles in human health. Most importantly, via one or other of its functions, both high and low levels of the enzyme can contribute to cancer. We have studied, for the first time, the roles played by telomerase in the life-cycle of the cellular slime mould, Dictyostelium discoideum, a model system with a rich history of helping us understand human biology. While we did not find any evidence of telomerase having the features typically needed to repair a chromosome, telomerase was necessary for many aspects of development. The Dictyostelium telomerase mutant we generated shows delayed aggregation and forms irregular fruiting bodies. The tert mutant miscalculates, in effect, how big those fruiting bodies should be, and they end up being too small. These results are significant because they show, for the first time, that a telomerase can influence tissue size regulation, a process central to a wide range of cancers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要