Static and dynamic mechanical properties of graphene oxide-based bone cementing agents

JOURNAL OF COMPOSITE MATERIALS(2019)

Cited 20|Views11
No score
Abstract
The purpose of this laboratory study was to formulate graphene oxide (GO) nano-sheets and characterize composites of homogenously dispersed GO sheets in poly(methyl methacrylate) (PMMA) acrylic resin of two groups, i.e., with 0.025 wt/wt.% GO (GO1-group) and 0.05 wt/wt.% GO (GO2-group). A large array of surface, mechanical and dynamic mechanical properties, including creep, recovery, stress relaxation behaviour and temperature and frequency sweep of the formulated bone cements were further characterized. Analysis of variance test results (p = 0.05, n = 5) indicated that the nanohardness and elastic modulus of the experimental groups were not significantly different from those of the control. Micro-computed tomography results showed high porosity in the experimental groups. The compressive strength significantly increased both in GO1- and GO2-group under dry and wet storage conditions. The dynamic mechanical properties suggest a desirable role of GO in polymerization with PMMA. The produced GO-PMMA composites exhibited the expected characteristics, so their use in developing low-loading bone cement composites appears to be promising.
More
Translated text
Key words
Bone cement,composite,dynamic mechanical properties,graphene oxide,poly(methyl methacrylate)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined