Benefit from Photon Recycling at the Maximum-Power Point of State-of-the-Art Perovskite Solar Cells

arXiv: Applied Physics(2019)

引用 50|浏览17
暂无评分
摘要
Photon recycling is required for a solar cell to achieve an open-circuit voltage (V-OC) and power conversion efficiency (PCE) approaching the Shockley-Queisser theoretical limit. The achievable performance gains from photon recycling in metal halide perovskite solar cells remain uncertain due to high variability in material quality and the nonradiative recombination rate. We quantify the enhancement due to photon recycling for state-of-the-art perovskite Cs-0.05(MA(0.17)FA(0.83))(0.95)Pb(I0.83Br0.17)(3) (triple-cation) films and corresponding solar cells. We show that, at the maximum power point (MPP), the absolute PCE can increase up to 2.0% in the radiative limit, primarily due to a 77 mV increase in (V-MPP). For this photoactive layer, even with finite nonradiative recombination, benefits from photon recycling can be achieved when nonradiative lifetimes and external light-emitting diode (LED) electroluminescence efficiencies, Q(e)(LED), exceed 2 mu s and 10%, respectively. This analysis quantifies the significance of photon recycling in boosting the real-world performance of perovskite solar cells toward theoretical limits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要