Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes

Energy Storage Materials(2019)

Cited 154|Views9
No score
Abstract
Unstable solid electrolyte interphase (SEI) layer formation and uncontrolled lithium (Li) dendrites growth are two major obstacles that hinder the application of Li metal as the anode in Li batteries. To solve these problems, a multifunctional protective layer was designed for the first time using N2 plasma activation of the Li metal. A highly [001] oriented and flower shaped Li3N layer was obtained on the surface of Li metal with a plasma activation time less than 5 min. Due to high Young's modulus (48 GPa) and high ionic conductivity (5.02×10-1 mS cm-1), this unique protective layer can physically block the direct contact between reactive Li metal and the liquid organic electrolyte, and suppress the Li dendrites formation. It gives rise to a stable voltage profile with plating/stripping for 30,000 min in a symmetric cell. For Li/LCO full cell, the plasma activated Li3N electrode shows better capacity retention of more than 96% and higher capacity at a 5 C rate compared to bare Li anode. This plasma activation strategy provides a facile, scalable and efficient approach to realize a safe Li metal battery with superior electrochemical performance.
More
Translated text
Key words
Li3N,Lithium metal anode,Artificial SEI layer,N2 plasma
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined