GaxSe10-x based solar cells: Some alternatives for the improvement in their performance parameters

Solar Energy Materials and Solar Cells(2019)

引用 5|浏览6
暂无评分
摘要
We report on strategies that improve Se-derivative based solar cells performance. With this aim, a compact thin film based on ZnO nanoparticles is deposited onto fluorine doped tin oxide (FTO) as an electron-transport layer, in thermally evaporated GaxSe10-x based solar cells. ZnO nanoparticles films are synthesized by sol-gel process whereas GaxSe10-x material is obtained by mechanical alloying. Using current-voltage measurements, impedance spectroscopy, and capacitance-voltage profiling, device characteristics and performance limiting factors are revealed and discussed. Particularly, the use of ZnO nanoparticles results in improved device performance as well as long-term stability. In comparison to Se-only devices with the structure FTO/Se/Au (power conversion efficiency of 0.98%), under 100 mW/cm2 AM 1.5 G illumination the devices achieved a power conversion efficiency of 2.7% with the structure FTO/ZnO/GaSe9/Au (open circuit voltage of 0.71 V, short-circuit current of 7.9 mA/cm2). Hence, an increase of around 175% in the power conversion efficiency is obtained in comparison to Se-only devices. In addition, the effect of others parameters, like thickness of the active layer as well as the gallium contents in the alloy, are discussed.
更多
查看译文
关键词
Gallium selenide,Solar cells,Electric modulus spectroscopy,ZnO nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要