Phase transition in two-dimensional tellurene under mechanical strain modulation

Nano Energy(2019)

引用 41|浏览16
暂无评分
摘要
We carry out computational simulations based on density functional theory (DFT) to investigate different phases of two-dimensional (2-D) tellurene. These phases are classified by their characteristic space groups and symmetry elements. Correlations of these phases to the bulk crystalline tellurium structure are also illustrated. Our specific interests include mechanical property calculations for different phases and the possible phase transitions between them. Simulation results show that these 2-D Te phases have very different elastic moduli due to their different atomic bonding and relaxed structures. Moreover, compression along the in-plane directions facilitates the α → β phase transition, while in-plane tensile strains always make the α-phase more stable than the β-phase. However, the energy difference between the two phases is comparable to or even much smaller than the thermal energy kT, depending on the in-plane strain direction. We find that further increase of the tensile strain along the chain direction beyond a critical value, ca. 12%, may lead to a possible α → γ phase transition. As the tensile strain is above 15%, the γ-phase will be more stable than the α-phase, accompanied by a further reduced transition energy barrier.
更多
查看译文
关键词
Tellurene,Phase transition,Density functional theory (DFT),2-D materials,Strain engineering,Elastic modulus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要