Interaction of HelQ helicase with RPA modulates RPA-DNA binding and stimulates HelQ to unwind DNA through a protein roadblock.

bioRxiv(2019)

引用 0|浏览12
暂无评分
摘要
Cells reactivate compromised DNA replication forks using enzymes that include DNA helicases for separating DNA strands and remodelling protein-DNA complexes. HelQ helicase promotes replication-coupled DNA repair in mammals in a network of interactions with other proteins. We report newly identified HelQ helicase activities, when acting alone and when interacting with RPA. HelQ helicase was strongly inhibited by a DNA-protein barrier (BamHIE111A), and by an abasic site in the translocating DNA strand. Interaction of HelQ with RPA activated DNA unwinding through the protein barrier, but not through the abasic site. Activation was lost when RPA was replaced with bacterial SSB or DNA binding-defective RPA, RPAARO1. We observed stable HelQ-RPA-DNA ternary complex formation, and present evidence that an intrinsically disordered N-terminal region of HelQ (N-HelQ) interacts with RPA, destabilising RPA-DNA binding. Additionally, SEC-MALS showed that HelQ multimers are converted into catalytically active dimers when ATP-Mg2+ is bound. HelQ and RPA are proposed to jointly promote replication fork recovery by helicase-catalysed displacement of DNA-bound proteins, after HelQ gains access to ssDNA through its N-terminal domain interaction with RPA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要