Idealized Carbon-Based Materials Exhibiting Record Deliverable Capacities for Vehicular Methane Storage

JOURNAL OF PHYSICAL CHEMISTRY C(2019)

引用 12|浏览13
暂无评分
摘要
Materials for vehicular methane storage have been extensively studied, although no suitable material has been found. In this work, we use molecular simulation to investigate three types of carbon-based materials, Schwarzites, layered graphenes, and carbon nanoscrolls, for use in vehicular methane storage under adsorption conditions of 65 bar and 298 K and desorption conditions of 5.8 bar and 358 K. Ten different Schwarzites were tested and found to have high adsorption with maximums at 273 V-STP/V, but middling deliverable capacities of no more than 131 V-STP/V. Layered graphene and graphene nanoscrolls were found to have extremely high CH4 adsorption capacities of 355 and 339 V-STP/V, respectively, when the interlayer distance was optimized to 11 angstrom. The deliverable capacities of perfectly layered graphene and graphene nanoscrolls were also found to be exceptional with values of 266 and 252 V-STP/V, respectively, with optimized interlayer distances. These values make idealized graphene and nanoscrolls the record holders for adsorption and deliverable capacities under vehicular methane storage conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要