Bone Quality Assessment Of Osteogenic Cell Cultures By Raman Microscopy

JOURNAL OF RAMAN SPECTROSCOPY(2019)

Cited 10|Views11
No score
Abstract
The use of autologous stem/progenitor cells represents a promising approach to the repair of craniofacial bone defects. The calvarium is recognized as a viable source of stem/progenitor cells that can be transplanted in vitro to form bone. However, it is unclear if bone formed in cell culture is similar in quality to that found in native bone. In this study, the quality of bone mineral formed in osteogenic cell cultures were compared against calvarial bone from postnatal mice. Given the spectroscopic resemblance that exists between cell and collagen spectra, the feasibility of extracting information on cell activity and bone matrix quality were also examined. Stem/progenitor cells isolated from fetal mouse calvaria were cultured onto fused-quartz slides under osteogenic differentiation conditions for 28 days. At specific time intervals, slides were removed and analyzed by Raman microscopy and mineral staining techniques. We show that bone formed in culture at Day 28 resembled calvarial bone from 1-day-old postnatal mice with comparable mineralization, mineral crystallinity, and collagen crosslinks ratios. In contrast, bone formed at Day 28 contained a lower degree of ordered collagen fibrils compared with 1-day-old postnatal bone. Taken together, bone formed in osteogenic cell culture exhibited progressive matrix maturation and mineralization but could not fully replicate the high degree of collagen fibril order found in native bone.
More
Translated text
Key words
bone quality, osteogenic differentiation, Raman microscopy, stem cells, tissue engineering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined