Modeling and analysis of impact based on numerical and experimental approaches

ADVANCES IN MECHANICAL ENGINEERING(2018)

引用 3|浏览24
暂无评分
摘要
Impact is a universal phenomenon and has serious influences on the dynamic characteristics of mechanical system, so it is critical to accurately describe the effects of impact. In this work, a numerical and comprehensive method is presented to calculate the impact force in clearance joint during impact process, which has higher effectiveness and accuracy than the most popular used L-N model. Different from traditional contact models, where the coefficient of restitution is assumed to be a constant value nearly to 1 during impact process, the improved model in this work sets up the model of restitution coefficient related to two important parameters for impact phenomenon, which are initial impact velocity and the yield strength of the materials in clearance joints. A great number of numerical and experimental results are introduced and compared to validate the improved contact force model; it needs to be highlighted that the numerical results are based on the improved model and the most popular impact force model presented by Lankarani and Nikravesh, and the experimental results are based on two typical pendulum experimental test rigs. It can be concluded that (1) when compared to the experimental results, the numerical results based on the improved model are in better agreement than those based on Lankarani and Nikravesh impact force model; (2) the numerical results based on the improved model are in reasonable agreement with the experimental results, and the relative errors of impact force and restitution coefficient are all no more than 10% between numerical and experimental results; and (3) the improved contact force model is effective and can exactly describe the impact effects between two bodies in mechanical system.
更多
查看译文
关键词
Impact,improved contact force model,coefficient of restitution,initial impact velocity,mechanical system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要