Tunable Magnetoplasmonics In Lattices Of Ni/Sio2/Au Dimers

arXiv: Optics(2019)

Cited 16|Views4
No score
Abstract
We present a systematic study on the optical and magneto-optical properties of Ni/SiO2/Au dimer lattices. By considering the excitation of orthogonal dipoles in the Ni and Au nanodisks, we analytically demonstrate that the magnetoplasmonic response of dimer lattices is governed by a complex interplay of near- and far-field interactions. Near-field coupling between dipoles in Ni and low-loss Au enhances the polarizabilty of single dimers compared to that of isolated Ni nanodisks. Far-field diffractive coupling in periodic lattices of these two particle types enlarges the difference in effective polarizability further. This effect is explained by an inverse relationship between the damping of collective surface lattice resonances and the imaginary polarizability of individual scatterers. Optical reflectance measurements, magneto-optical Kerr effect spectra, and finite-difference time-domain simulations confirm the analytical results. Hybrid dimer arrays supporting intense plasmon excitations are a promising candidate for active magnetoplasmonic devices.
More
Translated text
Key words
Ferromagnetism,Metamaterials,Nanophotonics and plasmonics,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined