Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

biorxiv(2018)

引用 1|浏览13
暂无评分
摘要
Single-molecule localization microscopy (SMLM) promises to provide truly molecular scale images of biological specimens[1][1]–[5][2]. However, mechanical instabilities in the instrument, readout errors and sample drift constitute significant challenges and severely limit both the useable data acquisition length and the localization accuracy of single molecule emitters[6][3]. Here, we developed an actively stabilized total internal fluorescence (TIRF) microscope that performs 3D real-time drift corrections and achieves a stability of ≤1 nm. Self-alignment of the emission light path and corrections of readout errors of the camera automate channel alignment and ensure localization precisions of 1-4 nm in DNA origami structures and cells for different labels. We used Feedback SMLM to measure the separation distance of signaling receptors and phosphatases in T cells. Thus, an improved SMLM enables direct distance measurements between molecules in intact cells on the scale between 1-20 nm, potentially replacing Förster resonance energy transfer (FRET) to quantify molecular interactions[7][4]. In summary, by overcoming the major bottlenecks in SMLM imaging, it is possible to generate molecular images with nanometer accuracy and conduct distance measurements on the biological relevant length scales. [1]: #ref-1 [2]: #ref-5 [3]: #ref-6 [4]: #ref-7
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要