Origin of metal from CB chondrites in an impact plume – A combined study of Fe and Ni isotope composition and trace element abundances

Geochimica et Cosmochimica Acta(2019)

Cited 17|Views4
No score
Abstract
The formation processes of the unusually metal-rich CB chondrites are a matter of debate. It is widely accepted that metal grains have formed by condensation. However, it is still debated whether they condensed directly from the solar nebula or from an impact-induced vapor plume. In this study, we present high precision Fe and Ni isotope and trace element composition of zoned and unzoned metal grains from the CBb chondrites Hammadah al Hamra 237, QUE 94411, and MAC 02675, and the CH/CBb breccia Isheyevo and unzoned metal from the CBa chondrites Bencubbin, Gujba, and NWA 4025. Data were obtained using femtosecond laser ablation (multicollector) inductively coupled plasma mass spectrometry (fs-LA-(MC)-ICP-MS). Zoned metal grains from CBb meteorites generally display parallel profiles of Ni and Fe isotope compositions with very low δ56Fe and δ60Ni, and elevated concentrations of refractory siderophile elements in their cores. These findings are consistent with dominantly kinetic isotope- and trace element fractionation during condensation from a confined and fast cooling gas reservoir. Tungsten and Mo are frequently depleted relative to other refractory elements, particularly in zoned metal grains, which is suggestive for elevated oxygen fugacities in the gas reservoir. Such conditions are indicative of the formation of these metal grains during an impact event.
More
Translated text
Key words
CB chondrites,Zoned metal,Fe and Ni isotopes,Condensation,Impact plume
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined