Front/Rear Axle Torque Vectoring Control for Electric Vehicles

JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME(2019)

Cited 9|Views15
No score
Abstract
Vehicles equipped with multiple electric machines allow variable distribution of propulsive and regenerative braking torques between axles or even individual wheels of the car. Left/right torque vectoring (i.e., a torque shift between wheels of the same axle) has been treated extensively in the literature; however, fewer studies focus on the torque shift between the front and rear axles, namely, front/rear torque vectoring, a drivetrain topology more suitable for mass production since it reduces complexity and cost. In this paper, we propose an online control strategy that can enhance vehicle agility and "fun-to-drive" for such a topology or, if necessary, mitigate oversteer during sublimit handling conditions. It includes a front/rear torque control allocation (CA) strategy that is formulated in terms of physical quantities that are directly connected to the vehicle dynamic behavior such as torques and forces, instead of nonphysical control signals. Hence, it is possible to easily incorporate the limitations of the electric machines and tires into the computation of the control action. Aside from the online implementation, this publication includes an offline study to assess the effectiveness of the proposed CA strategy, which illustrates the theoretical capability of affecting yaw moment that the front/rear torque vectoring strategy has for a given set of vehicle and road conditions and considering physical limitations of the tires and actuators. The development of the complete strategy is presented together with the results from hardware-in-the-loop (HiL) simulations, using a high fidelity vehicle model and covering various use cases.
More
Translated text
Key words
Vehicle Dynamics,Tire-Road Friction Estimation,Control Strategies,Electric Drives,Yaw Stability Control
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined