Mechanistic investigation of mEos4b reveals a strategy to reduce track interruptions in sptPALM

Nature Methods(2019)

引用 41|浏览32
暂无评分
摘要
Green-to-red photoconvertible fluorescent proteins repeatedly enter dark states, causing interrupted tracks in single-particle-tracking localization microscopy (sptPALM). We identified a long-lived dark state in photoconverted mEos4b that results from isomerization of the chromophore and efficiently absorbs cyan light. Addition of weak 488-nm light swiftly reverts this dark state to the fluorescent state. This strategy largely eliminates slow blinking and enables the recording of longer tracks in sptPALM with minimum effort. The red form of the photoconvertible fluorescent protein mEos4b has a long-lived dark state with specific chromophore conformation. Weak 488-nm light depopulates this state, improving track lengths in single-particle tracking experiments.
更多
查看译文
关键词
Single-molecule biophysics,Super-resolution microscopy,Life Sciences,general,Biological Techniques,Biological Microscopy,Biomedical Engineering/Biotechnology,Bioinformatics,Proteomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要