3D system integration on 300 mm wafer level: High-aspect-ratio TSVs with ruthenium seed layer by thermal ALD and subsequent copper electroplating

Microelectronic Engineering(2019)

引用 12|浏览62
暂无评分
摘要
The copper electrochemical deposition (Cu-ECD) filling capability of high aspect ratio through silicon vias (HAR-TSVs) and homogeneity over 300 mm wafers were investigated on a film stack of thermal ALD (thALD) TaxNy barrier with thermal ALD Ru seed in comparison to TixNy barrier with a standard Cu i-PVD seed layer using a commercial 300 mm plating tool. As a first step, Cu-ECD was conducted on wafers with TSV blind holes with aspect ratios (AR) of 10 to 12. To achieve this, a thermal ALD film stack of approximately 6 nm TaxNy and 9 nm Ru (with a sheet resistance of [25.6 ± 1.4] Ω/ϒ) were deposited at 250 °C. The reactants for the barrier layer were (tert-butylimido)tris(diethylamino)tantalum(V) (TBTDET) and ammonia (NH3) as co-reactant. For the Ru seed layer deposition (ethylcyclopentadienyl)(pyrrolyl)ruthenium(II) (ECPR) and molecular oxygen as co-reactant were used supplemented by a hydrogen purge step after every third ALD cycle. The corresponding ALD growth was observed during the entire process by in-situ real-time spectroscopic ellipsometry (irtSE). Blister-free deposition and satisfactory film stack adhesion with no delamination was verified ex situ by scanning electron microscopy (SEM). The deposited copper inside the TSVs was analyzed by focused ion beam (FIB) imaging and X-ray tomography.
更多
查看译文
关键词
3D-integration,Through-silicon via,Copper TSV fill,Atomic layer deposition,Ruthenium seed layer,Tantalum nitride diffusion barrier
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要