$S$-matrix pole symmetries for non-Hermitian scattering Hamiltonians

PHYSICAL REVIEW A(2019)

引用 16|浏览11
暂无评分
摘要
The complex eigenvalues of some non-Hermitian Hamiltonians, e.g., parity-time-symmetric Hamiltonians, come in complex-conjugate pairs. We show that for non-Hermitian scattering Hamiltonians (of a structureless particle in one dimension) possessing one of four certain symmetries, the poles of the S-matrix eigenvalues in the complex momentum plane are symmetric about the imaginary axis, i.e., they are complex-conjugate pairs on the complex-energy plane. This applies even to states which are not bounded eigenstates of the system, i.e., antibound or virtual states, resonances, and antiresonances. The four Hamiltonian symmetries are formulated as the commutation of the Hamiltonian with specific antilinear operators. Example potentials with such symmetries are constructed and their pole structures and scattering properties are calculated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要