1218. Retapamulin as a Potential Decolonizing Agent: Activity against Mupirocin-Resistant Strains From Pediatric Patients With Methicillin-Resistant Staphylococcus aureus Infection

Open Forum Infectious Diseases(2018)

引用 0|浏览8
暂无评分
摘要
Abstract Background Controlling methicillin-resistant Staphylococcus aureus (MRSA) colonization is a common strategy to prevent transmission and recurrent infection. Standard decolonization regimens include nasal application of mupirocin ointment; however, increasing rates of mupirocin-resistance (Mup-R) have been noted globally. At our institution there has been an increase in community-acquired MRSA (CA-MRSA) infections among children living in Brooklyn, New York. A genotypic geographic cluster of an outbreak clone of the CA-MRSA strain USA 300 with a high rate (>85%) of mupirocin resistance, mediated by the plasmid borne mupA gene, was identified prompting investigation into an alternative decolonizing agent. We sought to investigate retapamulin, a topical pleuromutilin antibiotic, which has been shown to be effective against S. aureus with in vitro and in vivo activity against MRSA and a low propensity to develop resistance. Methods Broth microdilution was used to determine the minimum inhibitory concentrations (MIC) of retapamulin against 53 Mup-R MRSA isolates collected from pediatric patients (aged 9 months–17 years) presenting to our institution over an 18 month period with clinical MRSA infection. Susceptibility defined as ≤0.5 mg/L susceptible (EUCAST). Whole genome sequence data were analyzed for the presence of rplC and cfr gene mutations known to confer resistance to retapamulin. Results All 53 isolates were susceptible to retapamulin. 49/53 (92%) strains were inhibited at MIC 0.25 mg/L, 2/53 (4%) at MIC 0.125 mg/L, and 2/53 (4%) at MIC 0.5 mg/L. DNA sequence analysis showed that one isolate had a first-step mutation in the rplC gene, but it was not associated with reduced phenotypic susceptibility to retapamulin, as the MIC of that isolate was 0.25 mg/L. Conclusion Retapamulin demonstrated excellent in vitro activity against a genotypic cluster of Mup-R isolates from pediatric patients presenting to our institution with MRSA infection. These data suggest that retapamulin may be a promising alternative decolonization therapy for MRSA and a viable option to prevent the spread of mupirocin-resistant MRSA clones. Further research includes an ongoing randomized, placebo-controlled trial testing the in vivo efficacy of retapamulin as a nasal and perirectal decolonizing agent in children. Disclosures A. Patel, Aqua Pharmaceuticals: Investigator inititiated grant, Research grant. J. Lighter-Fisher, Aqua Pharmaceuticals: Investigator Initiated Grant, Research grant.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要