Synthesis of “lotus root”-like mesoporous titanium dioxide and its effects on UV response to aconitine release

Journal of Alloys and Compounds(2019)

引用 8|浏览6
暂无评分
摘要
Mesoporous titanium dioxide with a “lotus root”-like structure was synthesized for the first time using an improved template-free method. The structure has a BET (Brunauer Emmett Teller) surface area of 688.11 m2/g, a pore volume of 0.743 cm3/g, and a pore size of 3.59 nm. Aconitine, a botanical insecticide, could be loaded onto the mesoporous titanium dioxide via simply soaking the structure and had a maximum loading of 17.6%. UV spectroscopy was utilized to explore the drug release behaviors, and the results showed that aconitine-loaded mesoporous titanium dioxide particles UV irradiated could successfully release aconitine with a release rate of 46.24%, which was significantly higher than the samples lacking UV irradiation (36.80%). Meanwhile, the release rate of aconitine (48.94%) for pH 5.5 was significantly higher than that for pH 7.0 (42.09%). The results of microcalorimetry revealed that both the enthalpy change (ΔH) and entropy change (ΔS) were negative (ΔH < 0, ΔS < 0) for the whole process of aconitine loading onto the “lotus root”-like mesoporous titanium dioxide support. Hydrogen bonding was the driving force for drug loading, and this was also verified using Monte Carlo simulations. These results show that the “lotus root”-like mesoporous titanium dioxide material has some potential applications such as the storage and use of plant pesticides.
更多
查看译文
关键词
“Lotus root”-like mesoporous titanium dioxide,UV-Responsed drug release,Hydrogen bonding,Monte Carlo simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要