Structural, Topographical, And Mechanical Characteristics Of Purified Polyhydroxyoctanoate Polymer

JOURNAL OF APPLIED POLYMER SCIENCE(2019)

引用 27|浏览15
暂无评分
摘要
Insight into the topographic and mechanical properties of biomaterials allows for efficient selection of a material for a specific application. Here, atomic force microscopy (AFM) and force spectroscopy were exploited to reveal the topographic and mechanical characteristics of charcoal-purified, solvent-cast polyhydroxyoctanoate (PHO) film. The root mean square surface roughness of a PHO surface derived from ethyl acetate, acetone, or chloroform solution was 13.2, 11.5, or 30.9 nm, respectively, for 100 mu m(2) AFM images. The distribution of the local Young's modulus had a maximum of 25.4, 14.1, and 12.6 MPa for PHO films obtained from ethyl acetate, acetone, and chloroform solution, respectively. The positron annihilation spectroscopy measurements allowed us to determine the free volume in the polymer film structure (9.38%). Moreover, a number of additional techniques (X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, NMR, infrared spectroscopy, and polarized light microscopy) were used to reveal PHO features. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47192.
更多
查看译文
关键词
biocompatibility, biomaterials, biopolymers and renewable polymers, biosynthesis of polymers, morphology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要