Base Pressure of Spinning Finned Afterbodies in Supersonic Flow

AIAA JOURNAL(2019)

Cited 1|Views12
No score
Abstract
No AccessTechnical NotesBase Pressure of Spinning Finned Afterbodies in Supersonic FlowStephan Weidner, Robert Hruschka and Friedrich LeopoldStephan WeidnerFrench-German Research Institute of Saint-Louis, 68300 Saint-Louis, France*Ph.D. Student, Aerodynamics, Measurements & Simulations, 5 rue du Général Cassagnou.Search for more papers by this author, Robert HruschkaFrench-German Research Institute of Saint-Louis, 68300 Saint-Louis, France†Research Scientist, Aerodynamics, Measurements & Simulations, 5 rue du Général Cassagnou.Search for more papers by this author and Friedrich LeopoldFrench-German Research Institute of Saint-Louis, 68300 Saint-Louis, France†Research Scientist, Aerodynamics, Measurements & Simulations, 5 rue du Général Cassagnou.Search for more papers by this authorPublished Online:28 Oct 2018https://doi.org/10.2514/1.J056714SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Lamb J. P. and Oberkampf W. L., “Review and Development of Base Pressure and Base Heating Correlations in Supersonic Flow,” Journal of Spacecraft and Rockets, Vol. 32, No. 1, 1995, pp. 8–23. doi:https://doi.org/10.2514/3.26569 JSCRAG 0022-4650 LinkGoogle Scholar[2] Augenstein E., Leopold F., Christnacher F. and Bacher E., “Influence of Riblets on a Supersonic Wake Flow,” IUTAM Symposium on Mechanics of Passive and Active Flow Control. Fluid Mechanics and its Applications, Vol. 53, Springer, Dordrecht, 1999, pp. 145–150. doi:https://doi.org/10.1007/978-94-011-4199-4_24 Google Scholar[3] Durgesh V., Naughton J. W. and Whitmore S. A., “Experimental Investigation of Base-Drag Reduction via Boundary-Layer Modification,” AIAA Journal, Vol. 51, No. 2, 2013, pp. 416–425. doi:https://doi.org/10.2514/1.J051825 AIAJAH 0001-1452 LinkGoogle Scholar[4] Bourdon C. J. and Dutton J. C., “Mixing Enhancement in Compressible Base Flows via Generation of Streamwise Vorticity,” AIAA Journal, Vol. 39, No. 8, 2001, pp. 1633–1635. doi:https://doi.org/10.2514/2.1492 AIAJAH 0001-1452 LinkGoogle Scholar[5] Janssen J. R. and Dutton J. C., “Sub-Boundary-Layer Disturbance Effects on Supersonic Base-Pressure Fluctuations,” Journal of Spacecraft and Rockets, Vol. 42, No. 6, 2005, pp. 1017–1024. doi:https://doi.org/10.2514/1.12769 JSCRAG 0022-4650 LinkGoogle Scholar[6] Tillman T. G., Patrick W. P. and Paterson R. W., “Enhanced Mixing of Supersonic Jets,” Journal of Propulsion and Power, Vol. 7, No. 6, 1991, pp. 1006–1014. doi:https://doi.org/10.2514/3.23420 JPPOEL 0748-4658 LinkGoogle Scholar[7] Miller M. C. and Molnar J. W., “Wind Tunnel Measurements of the Magnus Induced Surface Pressures on a Spinning Artillery Projectile Model in the Transonic Speed Regime,” U.S. Army Chemical Research Development and Engineering Center (CRDEC) TR 86081, ADA175909, Aberdeen Proving Ground, MD, 1986. Google Scholar[8] Silton S. I. and Weinacht P., “Effect of Rifling Grooves on the Performance of Small-Caliber Ammunition,” U.S. Army Research Lab. (ARL) ADA505719, Aberdeen Proving Ground, MD, 2008. Google Scholar[9] Hruschka R. and Leopold F., “Effect of the Rotation of Finned Projectiles on Drag and Base Pressure,” 29th International Symposium on Shock Waves 2, Springer, Cham, 2015, pp. 1259–1264. doi:https://doi.org/10.1007/978-3-319-16838-8_75 Google Scholar[10] Weidner S., Hruschka R., Rey C., Leopold F., Frohnapfel B. and Seiler F., “Effects of a Swirling Flow Motion on the Supersonic Near Wake Flow Behind Blunt-Based Afterbodies,” 47th AIAA Fluid Dynamics Conference, AIAA Paper 2017-3971, 2017. doi:https://doi.org/10.2514/6.2017-3971 LinkGoogle Scholar[11] Leopold F., “Validation of a Navier-Stokes Solution Algorithm with Experimental Values in a Supersonic Wake,” International Journal for Numerical Methods in Fluids, Vol. 22, No. 2, 1996, pp. 137–148, https://doi.org/10.1002/(SICI)1097-0363(19960130)22:2<137::AID-FLD267>3.0.CO;2-3. IJNFDW 0271-2091 CrossrefGoogle Scholar[12] Herrin J. L. and Dutton J. C., “Supersonic Base Flow Experiments in the Near Wake of a Cylindrical Afterbody,” AIAA Journal, Vol. 32, No. 1, 1994, pp. 77–83. doi:https://doi.org/10.2514/3.11953 AIAJAH 0001-1452 LinkGoogle Scholar[13] Sieling W. R. and Page R. H., “A Re-Examination of Sting Interference Effects,” Propulsion and ASW Meeting, AIAA Paper 1970-585, 1970. doi:https://doi.org/10.2514/6.1970-585 Google Scholar[14] Chapman D. R., “An Analysis of Base Pressure at Supersonic Velocities and Comparison with Experiment,” NACA TR 1051, 1951. Google Scholar[15] Dolling D. S., Fournier E. and Shau Y. R., “Effects of Vortex Generators on the Growth of a Compressible Shear Layer,” Journal of Propulsion and Power, Vol. 8, No. 5, 1992, pp. 1049–1056. doi:https://doi.org/10.2514/3.23591 JPPOEL 0748-4658 LinkGoogle Scholar[16] Bhagwandin V. A., “High-Alpha Prediction of Roll Damping and Magnus Stability Coefficients for Finned Projectiles,” Journal of Spacecraft and Rockets, Vol. 53, No. 4, 2016, pp. 720–729. doi:https://doi.org/10.2514/1.A33419 JSCRAG 0022-4650 LinkGoogle Scholar[17] DeSpirito J. and Heavey K. R., “CFD Computation of Magnus Moment and Roll-Damping Moment of a Spinning Projectile,” AIAA Atmospheric Flight Mechanics Conference and Exhibit, AIAA Paper 2004-4713, 2004. doi:https://doi.org/10.2514/6.2004-4713 LinkGoogle Scholar Previous article FiguresReferencesRelatedDetailsCited byInfluence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies27 August 2021 | Journal of Fluid Mechanics, Vol. 925 What's Popular Volume 57, Number 1January 2019 CrossmarkInformationCopyright © 2018 by the French-German Research Institute of Saint-Louis (ISL). Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0001-1452 (print) or 1533-385X (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAirspeedBoundary LayersComputational Fluid DynamicsFlow RegimesFluid DynamicsFluid MechanicsVortex DynamicsWind Tunnels KeywordsCompressible FlowBoundary Layer ThicknessAdverse Pressure GradientFreestream Mach NumberProjectilesWind Tunnel ModelsStatic PressureSupersonic SpeedDe Laval NozzlesGas ConstantPDF Received12 September 2017Accepted27 July 2018Published online28 October 2018
More
Translated text
Key words
spinning finned afterbodies,pressure,flow
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined