Technical note: A simple theoretical model framework to describe plant stomatal “sluggishness” in response to elevated ozone concentrations

BIOGEOSCIENCES(2018)

引用 6|浏览14
暂无评分
摘要
Elevated levels of tropospheric ozone, O-3, cause damage to terrestrial vegetation, affecting leaf stomatal functioning and reducing photosynthesis. Climatic impacts under future raised atmospheric greenhouse gas (GHG) concentrations will also impact on the net primary productivity (NPP) of vegetation, which might for instance alter viability of some crops. Together, ozone damage and climate change may adjust the current ability of terrestrial vegetation to offset a significant fraction of carbon dioxide (CO2) emissions. Climate impacts on the land surface are well studied, but arguably large-scale modelling of raised surface level O-3 effects is less advanced. To date most models representing ozone damage use either O-3 concentration or, more recently, flux-uptake-related reduction of stomatal opening, estimating suppressed land-atmosphere water and CO2 fluxes. However there is evidence that, for some species, O-3 damage can also cause an inertial "sluggishness" of stomatal response to changing surface meteorological conditions. In some circumstances (e.g. droughts), this loss of stomata control can cause them to be more open than without ozone interference. To both aid model development and provide empiricists with a system on to which measurements can be mapped, we present a parameter-sparse framework specifically designed to capture sluggishness. This contains a single time-delay parameter tau(O3), characterizing the timescale for stomata to catch up with the level of opening they would have without damage. The larger the value of this parameter, the more sluggish the modelled stomatal response. Through variation of tau(O3), we find it is possible to have qualitatively similar responses to factorial experiments with and without raised O-3, when comparing to reported measurement time series presented in the literature. This low-parameter approach lends itself to the inclusion of ozone-induced inertial effects being incorporated in the terrestrial vegetation component of Earth system models (ESMs).
更多
查看译文
关键词
ozone,plant,sluggishness”
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要