Impact of Temperature on Autumn- and Spring-initiated Inflorescence Systems within a Biennial Pruning System of Protea ‘Pink Ice’ Cut Flowers

HORTSCIENCE(2018)

Cited 2|Views1
No score
Abstract
The potential impact of increasing temperatures driven by climate change on cultivated Protea cut flower production systems is not known. This study used a biennial pruning system in Protea 'Pink Ice' to track the physiological and reproductive responses in comparable phenological stages, but exposed to different seasonally determined temperature conditions. Protea 'Pink Ice' generally initiates inflorescences terminally on the spring flush. A limited number of shoots can initiate inflorescences on the preceding autumn flush, leading to an advanced harvesting time compared with that of the spring-initiated inflorescences. In a commercial Protea orchard in Hopefield, South Africa, gas exchange, carbohydrate availability, and vegetative and reproductive growth were compared between the two shoot types in the context of seasonal temperature differences. Leaves of shoots, which initiated inflorescences on the autumn flush, generally had higher light-saturated net carbon dioxide (CO2) assimilation capacities in autumn (April-May) and spring (October-November). There is evidence of a requirement of minimum shoot diameter of 7.6 mm (four-or five-flush shoot), as measured directly above the intercalation between the terminal (uppermost mature flush) and subterminal flush, when the subsequent flush was at budbreak stage during April (autumn) and at least five flushes to be required for floral initiation in Protea 'Pink Ice'. Spring-initiated inflorescences had a shorter developmental period (4 months) than that of autumn-initiated inflorescences (7 months) and developed into significantly smaller (width) inflorescences with a lower width and dry weight at harvest. These inflorescences were harvested on average a month later compared with autumn-initiated inflorescences. The ambient temperature during inflorescence development played a significant role in the inflorescence growth rate, affecting the time required from visible inflorescence detection to harvest. At the calculated optimum base temperature of 9 degrees C, autumn-initiated inflorescences required 41,010 growing degree hours (GDH), whereas spring-initiated inflorescences required 35,872 GDH from initiation to anthesis. Under future warmer growing conditions, anticipated decreased size and dry weight of inflorescences may reduce marketability and income for Protea producers.
More
Translated text
Key words
gas exchange,climate change,phenology,Proteaceae,reproductive response,vegetative growth
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined