Improved quantification of the porosity–permeability relationship of limestones using petrographical texture

PETROLEUM GEOSCIENCE(2018)

Cited 5|Views21
No score
Abstract
The relationship between porosity and permeability in limestones is a fundamental constitutive equation in subsurface fluid flow modelling, and is essential in quantifying a range of geological processes. For a given porosity, the permeability of limestones varies over a range of up to five orders of magnitude. Permeability of a given rock sample depends on the total amount of pore space, characterized by porosity, as well as how the pore space is distributed within the rock, which can be expressed as a probability density function of pore sizes. We investigate in this study whether the information about poresize distribution can be sufficiently captured by the bulk petrographical properties extracted from thin sections. We demonstrate that most of the uncertainty can be explained by variations in texture, which is defined by the mud content (mass fraction of particles less than 0.06 mm in diameter). Using mud content as a quantitative texture descriptor, we used multivariable regression and neural network models to predict permeability from porosity. For a given porosity, inclusion of mud content reduces the uncertainty in permeability prediction from five to two orders of magnitude.
More
Translated text
Key words
limestones,petrographical texture,porosity–permeability relationship
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined