Experimental Investigations on the Coefficient of Restitution for Sphere–Thin Plate Elastoplastic Impact

JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME(2018)

引用 14|浏览4
暂无评分
摘要
In multiparticle simulations of industrial granular systems such as hoppers, tumblers, and mixers, the particle energy dissipation is governed by an important input parameter called the coefficient of restitution (COR). Oftentimes, the wall thickness in these systems is on the order of a particles diameter or less. However, the COR value implemented in event-driven simulations is either constant or a monotonically decreasing function of the impact velocity. The present work experimentally investigates the effect of wall thickness on the COR through sphere-thin plate elastoplastic impacts and elucidates the underlying impact phenomena. Experiments were performed on 0.635 cm and 0.476 cm diameter (d) spheres of various materials impacting aluminum 6061 plates of different thicknesses (t) with the low impact velocities up to 3.1 m/s. Besides COR, indentation measurements and numerical simulations are performed to gain a detailed understanding of the contact process and energy dissipation mechanism. As the "t/d" ratio decreases, a considerable amount of energy is dissipated into flexural vibrations leading to a significantly lower COR value. Based on the results, it can be concluded that using a constant COR input value in particle simulations may not always be an appropriate choice, especially, in the case of thin plates. However, these new COR results validate that when the wall thickness is more than twice the sphere diameter (i.e., t/d > 2 ), a constant COR value obtained for an impact with semi-infinite plate can be reasonably used.
更多
查看译文
关键词
coefficient of restitution,elastoplastic impact,sphere,plate,hopper,flexural vibrations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要