Thermophysical properties of carbon fiber reinforced multilayered (PyC–SiC)n matrix composites

Journal of the European Ceramic Society(2017)

引用 13|浏览4
暂无评分
摘要
Three kinds of carbon fiber reinforced multilayered (PyC–SiC)n matrix (C/(PyC–SiC)n) composites (n=1, 2 and 4) were prepared by means of layer-by-layer deposition of PyC and SiC via chemical vapor infiltration. Thermal expansion behaviors in the temperature range of 800–2500°C and thermal conductivity from room temperature to 1900°C of C/(PyC–SiC)n composites with various microstructures were investigated. The results show that with increasing PyC–SiC sequences number (n), the coefficients of thermal expansion of the composites decrease due to the increase of interfacial delamination, providing room for thermal expansion. The thermal diffusivity and thermal conductivity also decrease with the increase of sequences number, which are attributed to the enhancement of phonon-interface scattering resulted from the increasing number of interfaces. Modified parallel and series models considering the interfacial thermal resistance are proposed to elaborate thermal conductivity of the composites, which is in accordance with the experimental results.
更多
查看译文
关键词
Multilayered,Composites,Thermal expansion,Thermal conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要