Water oxidation catalysis with ligand substituted Ru–bpp type complexes

CATALYSIS SCIENCE & TECHNOLOGY(2016)

Cited 28|Views16
No score
Abstract
A series of symmetric and non-symmetric dinuclear Ru complexes of general formula {[RuR(2)trpy)H2O)][Ru(R-3-trpy)(H2O)](mu-R-1-bpp)}(3+) where trpy is 2,2':6',2 "-terpyridine, bpp(-) is 3,5-bis(2-pyridyl)pyrazolate and R-1, R-2 and R-3 are electron donating (ED) and electron withdrawing (EW) groups such as Me, MeO, NH2 and NO2 have been prepared using microwave assisted techniques. These complexes have been thoroughly characterized by means of analytical (elemental analysis), spectroscopic (UV-vis, NMR) and electrochemical (CV, SQWV, CPE) techniques. The single crystal X-ray structures for one acetate-and one chloro-bridged precursor have also been solved. Kinetic analysis monitored by UV-vis spectroscopy reveals the electronic effects exerted by the ED and EW groups on the substitution kinetics and stoichiometric water oxidation reaction. The catalytic water oxidation activity is evaluated by means of chemically (Ce-IV), electrochemically, and photochemically induced processes. It is found that, in general, ED groups do not strongly affect the catalytic rates whereas EW groups drastically reduce catalytic rates. Finally, DFT calculations provide a general and experimentally consistent view of the different water oxidation pathways that can operate in the water oxidation reactions catalyzed by these complexes.
More
Translated text
Key words
water oxidation,ligand,ru–bpp,catalysis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined