Robust zero-energy modes in an electronic higher-order topological insulator

arXiv: Mesoscale and Nanoscale Physics(2019)

Cited 161|Views1
No score
Abstract
Quantum simulators are essential tools for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices have led the field so far, but the basis for electronic quantum simulators is now being developed. Here, we experimentally realize an electronic higher-order topological insulator (HOTI). We create a breathing kagome lattice by manipulating carbon monoxide molecules on a Cu(111) surface using a scanning tunnelling microscope. We engineer alternating weak and strong bonds to show that a topological state emerges at the corner of the non-trivial configuration, but is absent in the trivial one. Different from conventional topological insulators, the topological state has two dimensions less than the bulk, denoting a HOTI. The corner mode is protected by a generalized chiral symmetry, which leads to a particular robustness against perturbations. Our versatile approach to designing artificial lattices holds promise for revealing unexpected quantum phases of matter.
More
Translated text
Key words
Quantum simulation,Topological matter,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined