Optical properties of adult Drosophila brains in one-, two-, and three-photon microscopy.

BIOMEDICAL OPTICS EXPRESS(2019)

引用 14|浏览16
暂无评分
摘要
Drosophila is widely used in connectome studies due to its small brain size, sophisticated genetic tools, and the most complete single-neuron-based anatomical brain map. Surprisingly, even the brain thickness is only 200-mu m, common Ti: sapphire-based two-photon excitation cannot penetrate, possibly due to light aberration/scattering of trachea. Here we quantitatively characterized scattering and light distortion of trachea-filled tissues, and found that trachea-induced light distortion dominates at long wavelength by comparing one-photon (488-nm), two-photon (920-nm), and three-photon (1300-nm) excitations. Whole-Drosophila-brain imaging is achieved by reducing tracheal light aberration/scattering via brain-degassing or long-wavelength excitation at 1300-nm. Our work paves the way toward constructing whole-brain connectome in a living Drosophila. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要