EACD: evolutionary adaptation to concept drifts in data streams

Data Mining and Knowledge Discovery(2019)

引用 22|浏览24
暂无评分
摘要
This paper presents a novel ensemble learning method based on evolutionary algorithms to cope with different types of concept drifts in non-stationary data stream classification tasks. In ensemble learning, multiple learners forming an ensemble are trained to obtain a better predictive performance compared to that of a single learner, especially in non-stationary environments, where data evolve over time. The evolution of data streams can be viewed as a problem of changing environment, and evolutionary algorithms offer a natural solution to this problem. The method proposed in this paper uses random subspaces of features from a pool of features to create different classification types in the ensemble. Each such type consists of a limited number of classifiers (decision trees) that have been built at different times over the data stream. An evolutionary algorithm (replicator dynamics) is used to adapt to different concept drifts; it allows the types with a higher performance to increase and those with a lower performance to decrease in size. Genetic algorithm is then applied to build a two-layer architecture based on the proposed technique to dynamically optimise the combination of features in each type to achieve a better adaptation to new concepts. The proposed method, called EACD, offers both implicit and explicit mechanisms to deal with concept drifts. A set of experiments employing four artificial and five real-world data streams is conducted to compare its performance with that of the state-of-the-art algorithms using the immediate and delayed prequential evaluation methods. The results demonstrate favourable performance of the proposed EACD method in different environments.
更多
查看译文
关键词
Data streams, Ensemble learning, Concept drifts, Evolutionary algorithms, Genetic algorithm, Non-stationary environments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要