Chrome Extension
WeChat Mini Program
Use on ChatGLM

Impact Ionization Induced by Accelerated Photoelectrons for Wide-Range and Highly Sensitive Detection of VOCs at Room Temperature.

ACS applied materials & interfaces(2019)

Cited 4|Views9
No score
Abstract
Ionization-based volatile organic compound (VOC) sensors that use photons or electrons operating at room temperature have attracted considerable attention as a promising alternative to conventional metal oxide-based sensors that require high temperature for sensing function. However, the photoionization sensors cannot ionize many gas species for their limited photon energy, and field emission-based ionization sensors that rely on the breakdown voltage of specific gas species in pure state may not tell different concentration. This work demonstrates the detection of VOCs using impact ionization induced by accelerated photoelectrons. While the photoelectrons emitted by relatively low photon energy typically have insufficient kinetic energy to cause impact ionization, in this approach, they are accelerated between micro-gap electrodes to enhance their kinetic energy such that the impact ionization of VOCs can be achieved. The demonstrated gas sensor sensitively detects toluene concentration in a wide range from 1000 ppm to 100 ppb with fast response and recovery time at room temperature. Additionally, diverse VOC species including benzene, p-xylene, and even acetylene with high ionization energy, can be detected. The proposed method could be a viable solution for VOCs sensors with low cost, scalable producibility, and high performance.
More
Translated text
Key words
photoelectron,acceleration,impact ionization,volatile organic compounds,gas sensor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined