Canonical Quantum Observables for Molecular Systems Approximated by Ab Initio Molecular Dynamics

Annales Henri Poincaré(2018)

引用 3|浏览7
暂无评分
摘要
It is known that ab initio molecular dynamics based on the electron ground-state eigenvalue can be used to approximate quantum observables in the canonical ensemble when the temperature is low compared to the first electron eigenvalue gap. This work proves that a certain weighted average of the different ab initio dynamics, corresponding to each electron eigenvalue, approximates quantum observables for any temperature. The proof uses the semiclassical Weyl law to show that canonical quantum observables of nuclei–electron systems, based on matrix-valued Hamiltonian symbols, can be approximated by ab initio molecular dynamics with the error proportional to the electron–nuclei mass ratio. The result covers observables that depend on time correlations. A combination of the Hilbert–Schmidt inner product for quantum operators and Weyl’s law shows that the error estimate holds for observables and Hamiltonian symbols that have three and five bounded derivatives, respectively, provided the electron eigenvalues are distinct for any nuclei position and the observables are in the diagonal form with respect to the electron eigenstates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要