谷歌浏览器插件
订阅小程序
在清言上使用

Molecular and functional properties of two Spodoptera exigua acetylcholinesterase genes.

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY(2019)

引用 10|浏览1
暂无评分
摘要
Acetylcholinesterase (AChE) is a vital enzyme that hydrolyzes acetylcholine. Here, full-length complementary DNAs (cDNAs) of two acetylcholinesterase genes (SeAce1 and SeAce2) were obtained from Spodoptera exigua, a widespread phytophagous pest in agriculture. The complete SeAce1 cDNA comprised 5447 nucleotides including an open reading frame (ORF) encoding 694 amino acids, while SeAce2 cDNA encompassed a 1917-bp ORF which would likely yield 638 amino acids. Both SeAce1 and SeAce2 contained specific characteristics of functional AChE. A phylogenetic tree of all lepidopteran insect Aces showed S. exigua clustered with S. litura, Helicoverpa assulta, and H. armigera, all of which are Noctuidae. In S. exigua, SeAce1 gene expression levels (reverse transcription polymerase chain reaction [RT-PCR] and quantitative RT-PCR) were markedly increased compared with SeAce2 in all developmental phases and tissue types. Both genes were down regulated by inserting the corresponding dsRNAs in 5th instar larvae, which resulted in 56.7% (SeAce1) and 24.6% (SeAce2) death. Downregulation of both SeAce1 and SeAce2 significantly reduced fecundity and vitellogenin gene expression in S. exigua. These results revealed the biological functions of the two Ace genes (SeAce1 and SeAce2), providing novel insights into the development of strategies for controlling insect pests.
更多
查看译文
关键词
acetylcholinesterase,RNA interference,spatiotemporal expression,Spodoptera exigua,vitellogenin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要