Chrome Extension
WeChat Mini Program
Use on ChatGLM

Molecular characterization of manganese superoxide dismutase (MnSOD) from sterlet Acipenser ruthenus and its responses to Aeromonas hydrophila challenge and hypoxia stress.

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology(2019)

Cited 6|Views4
No score
Abstract
A novel gene encoding the mitochondrial manganese superoxide dismutase from sterlet Acipenser ruthenus (Ar-MnSOD) was cloned. The full-length cDNA of MnSOD was of 1040 bp with a 672 bp open reading frame encoding 224 amino acids and the deduced amino acid sequence was located in mitochondria. Sequence comparison analysis showed that Ar-MnSOD was highly similar to MnSODs of invertebrates and vertebrates, especially those of freshwater Cyprinidae fishes and mammals. Phylogenetic analysis revealed that Ar-MnSOD was distant from MnSODs of other fishes and belonged to the family of mitochondrial MnSODs (mMnSOD). Consistently, Ar-MnSOD was located in mitochondria. The 3D structure of Ar-MnSOD was predicted and the overall structure was similar to that of MnSODs of humans and the bay scallop Argopecten irradians. In addition, mRNA of Ar-MnSOD was detected to extensively express in all tissues, with the highest level in brain and liver. Spleen and head kidney inoculation of Aeromonas hydrophila led to a significant up-regulation of Ar-MnSOD transcript levels. Also, hypoxia induced a transient increase in transcription of Ar-MnSOD in the gills, but not in the heart and brain, suggesting metabolic depression in these vital organs. The results also implied the anti-hypoxia properties of Ar-MnSOD in the related tissues and proved that Ar-MnSOD was involved in the stress response and (anti) oxidative processes triggered by hypoxia. The results indicated that Ar-MnSOD is induced upon A. hydrophila infection and hypoxia, consistent with its role in host immune and stress-induced anti-oxidative responses.
More
Translated text
Key words
Acipenser ruthenus,Acipenseriformes,Aeromonas hydrophila,Hypoxia stress,Manganese,Superoxide dismutase (MnSOD)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined