Streptococcus gordonii programs epithelial cells to resist ZEB2 induction by Porphyromonas gingivalis.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2019)

引用 56|浏览20
暂无评分
摘要
The polymicrobial microbiome of the oral cavity is a direct precursor of periodontal diseases, and changes in microhabitat or shifts in microbial composition may also be linked to oral squamous cell carcinoma. Dysbiotic oral epithelial responses provoked by individual organisms, and which underlie these diseases, are widely studied. However, organisms may influence community partner species through manipulation of epithelial cell responses, an aspect of the host microbiome interaction that is poorly understood. We report here that Porphyromonas gingivalis, a keystone periodontal pathogen, can up-regulate expression of ZEB2, a transcription factor which controls epithelial-mesenchymal transition and inflammatory responses. ZEB2 regulation by P. gingivalis was mediated through pathways involving β-catenin and FOXO1. Among the community partners of P. gingivalis, Streptococcus gordonii was capable of antagonizing ZEB2 expression. Mechanistically, S. gordonii suppressed FOXO1 by activating the TAK1-NLK negative regulatory pathway, even in the presence of P. gingivalis Collectively, these results establish S. gordonii as homeostatic commensal, capable of mitigating the activity of a more pathogenic organism through modulation of host signaling.
更多
查看译文
关键词
EMT, commensal, polymicrobial community, FOXO1, periodontal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要