A Method of Correcting for the Effect of Temperature on Low-Contrast Penetration Measurement in Urethane Phantoms.

Ultrasound in Medicine & Biology(2019)

Cited 1|Views6
No score
Abstract
Urethane-based test objects are routinely used for ultrasound quality assurance because of their durability and robustness. The acoustic properties of these phantoms including speed of sound and attenuation, however, have a strong dependence on temperature. Reliable measurement of low-contrast penetration, which is widely used for ultrasound system quality assurance testing, with these phantoms is therefore problematic. To alleviate this, a correction method was proposed using speed of sound estimated by measuring filament target separation. The method was developed using a range of 17 transducer geometry and frequency combinations across 5 ultrasound systems and validated using a further 5 systems. This was found to reduce the uncertainty of low-contrast penetration measurement from an average 17.6 mm to 4.9 mm over the temperature range 8°C to 32°C. This represents a greater than threefold improvement in precision of low-contrast penetration measurement.
More
Translated text
Key words
Ultrasound quality assurance,Urethane test object,Low-contrast penetration,Depth of penetration
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined