Chrome Extension
WeChat Mini Program
Use on ChatGLM

Low Wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice.

ELIFE(2019)

Cited 62|Views20
No score
Abstract
The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/beta-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific beta-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5(+) vessels, stabilizing junctions and by reducing Plvap/Meca32(+) and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis.
More
Translated text
Key words
developmental biology,mouse,zebrafish
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined