Spectral evidence of squeezing of a weakly damped driven nanomechanical mode

PHYSICAL REVIEW X(2020)

引用 32|浏览0
暂无评分
摘要
Because of the broken time-translation symmetry, in periodically driven vibrational systems fluctuations of different vibration components have different intensities. fluctuations of one of the components are often squeezed, whereas fluctuations of the other component, which is shifted in phase by pi/2, are increased. Squeezing is a multifaceted phenomenon; it attracts much attention from the perspective of high-precision measurements. Here we demonstrate a new and hitherto unappreciated side of squeezing: its direct manifestation in the spectra of driven vibrational systems. With a weakly damped nanomechanical resonator, we study the spectrum of thermal fluctuations of a resonantly driven nonlinear mode. In the attained sideband-resolved regime, we show that the asymmetry of the spectrum directly characterizes the squeezing. This opens a way to deduce squeezing of thermal fluctuations in strongly underdamped resonators, for which a direct determination by a standard homodyne measurement is impeded by frequency fluctuations. The experimental and theoretical results are in excellent agreement. We further extend the theory to also describe the spectral manifestation of squeezing of quantum fluctuations.
更多
查看译文
关键词
Nanomechanical testing,Nanoscale Friction,Force Spectroscopy,Nanomechanical Systems,Sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要