Scalable Assembly Of Crystalline Binary Nanocrystal Superparticles And Their Enhanced Magnetic And Electrochemical Properties

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2018)

引用 82|浏览20
暂无评分
摘要
Self-assembled binary nanocrystal superlattices (BNSLs) represent an important class of solid-state materials with potentially designed properties. In pursuit of widening the range of applications for binary superlattice materials, it is desirable to develop scalable assembly methods that enable high-quality BNSLs with tailored compositions, structures, and morphologies. Here, we report the gram-scale assembly of crystalline binary nanocrystal superparticles with high phase purity through an emulsion-based process. The structure of the resulting BNSL colloids can be tuned in a wide range (AB(13), AlB2, MgZn2, NaCl, and CaCu5) by varying the size and/or number ratios of the two nanocrystal components. Access to large-scale, phase-pure BNSL colloids offers vast opportunities for investigating their physiochemical properties, as exemplified by AB(13)-type CoFe2O4-Fe3O4 binary superparticles. Our results show that CoFe2O4-Fe3O4 binary superparticles not only display enhanced magnetic coupling but also exhibit superior lithium-storage properties. The nonclosed-packed NC packing arrangements of AB(13)-type binary superparticles are found to play a key role in facilitating lithiation/delithiation kinetics and maintaining structural integrity during repeated cycling. Our work establishes the scalable assembly of high-quality BNSL colloids, which is beneficial for accelerating the exploration of multicomponent nanocrystal superlattices toward various applications.
更多
查看译文
关键词
crystalline binary nanocrystal superparticles,enhanced magnetic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要