Stability Of Scrape-Off Layer Plasma: A Modified Rayleigh-Benard Problem

PHYSICS OF PLASMAS(2019)

引用 5|浏览6
暂无评分
摘要
We present an extensive linear stability analysis of a two-dimensional fluid model used to study the plasma dynamics in the scrape-off layer of tokamaks. The model equations are based on the Braginskii fluid equations under the assumptions of drift ordering and electrostatic plasma. The model also employs the commonly used slab geometry approximation, whereby the magnetic field is assumed constant and straight, with the effects of curvature reintroduced as effective gravitational terms. We study the linear instability in the system by solving a boundary value problem, thereby extending previous studies, which focused on a local analysis. Furthermore, we demonstrate that the governing plasma equations for the scrape-off layer can be viewed as describing a thermal convection problem with additional effects. The new features include a non-uniform basic state gradient, linear damping terms, and additional advective terms. We characterize the conditions at the onset of instability and perform an extensive parameter scan to describe how the stability threshold varies as a function of plasma parameters. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要