Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Mi-croporosity.

ACS applied materials & interfaces(2018)

Cited 52|Views10
No score
Abstract
A detailed analysis of the basic transport parameters of two triptycene-based polymers of intrinsic microporosity (PIMs), the ultrapermeable PIM-TMN-Trip and the more selective PIM-BTrip, as a function of temperature from 25°C to 55°C, is reported. For both PIMs, high permeability is based on very high diffusion and solubility coefficients. The contribution of these two factors on the overall permeability is affected by the temperature and depends on the pene-trant dimensions. Energetic parameters of permeability, diffusivity and solubility are calculated using Arrhenius-van't Hoff equations and compared with those of the archetypal PIM-1 and the ultrapermeable but poorly selective poly(trimethylsilylpropyne) (PTMSP). This considers, for the first time, the role of entropic and energetic selectivities in the diffusion process through highly rigid PIMs. This analysis demonstrates how energetic selectivity dominates the gas transport properties of the highly rigid triptycene PIMs and enhances the strong size-sieving character of these ultrapermeable polymers.
More
Translated text
Key words
polymer of Intrinsic microporosity,ultrapermeability,gas separation,temperature dependence,entropic selectivity,energetic selectivity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined