Coupled Variational Bayes via Optimization Embedding.

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018)(2018)

引用 30|浏览272
暂无评分
摘要
Variational inference plays a vital role in learning graphical models, especially on large-scale datasets. Much of its success depends on a proper choice of auxiliary distribution class for posterior approximation. However, how to pursue an auxiliary distribution class that achieves both good approximation ability and computation efficiency remains a core challenge. In this paper, we proposed coupled variational Bayes which exploits the primal-dual view of the ELBO with the variational distribution class generated by an optimization procedure, which is termed optimization embedding. This flexible function class couples the variational distribution with the original parameters in the graphical models, allowing end-to-end learning of the graphical models by back-propagation through the variational distribution. Theoretically, we establish an interesting connection to gradient flow and demonstrate the extreme flexibility of this implicit distribution family in the limit sense. Empirically, we demonstrate the effectiveness of the proposed method on multiple graphical models with either continuous or discrete latent variables comparing to state-of-the-art methods.
更多
查看译文
关键词
proposed method,latent variables,variational bayes,gradient flow,variational inference,graphical models,end-to-end learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要