Universal scaling for recovery of Fourier's law in low-dimensional solids under momentum conservation.

PHYSICAL REVIEW E(2020)

引用 4|浏览0
暂无评分
摘要
Dynamic renormalization group (RG) of fluctuating viscoelastic equations is investigated to clarify the cause for numerically reported disappearance of anomalous heat conduction (recovery of Fourier's law) in low-dimensional momentum-conserving systems. RG flow is obtained explicitly for simplified two model cases: a one-dimensional continuous medium under low pressure and incompressible viscoelastic medium of arbitrary dimensions. Analyses of these clarify that the inviscid fixed point of contributing the anomalous heat conduction becomes unstable under the RG flow of nonzero elastic-wave speeds. The dynamic RG analysis further predicts a universal scaling of describing the crossover between the growth and saturation of observed heat conductivity, which is confirmed through the numerical experiments of Fermi-Pasta-Ulam β (FPU-β) lattices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要